A novel approach for analog circuit incipient fault diagnosis by using KECA as a preprocessor
نویسنده
چکیده
In order to diagnose incipient fault of analog circuits effectively, an analog circuit incipient fault approach by using kernel entropy component analysis (KECA) as a preprocessor is proposed in the paper. Time responses are acquired by sampling outputs of the circuits under test. Raw features with high dimension are generated by wavelet transform. Furthermore, lower dimensional features are produced through KECA as samples which are used to construct a classification model based on least squares support vector machine. Bandpass filter and leapfrog filter incipient fault diagnosis simulations demonstrate the diagnose procedure of the proposed approach, and also validate proposed approach by using KECA as a preprocessor can produce higher diagnosis accuracy than the commonly used methods. Key-Words: Analog circuits, Incipient fault diagnosis, Wavelet transform, KECA, Least squares support vector machine
منابع مشابه
AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملMetrology and Measurement Systems
Considering the problem to diagnose incipient faults in nonlinear analog circuits, a novel approach based on fractional correlation is proposed and the application of the subband Volterra series is used in this paper. Firstly, the subband Volterra series is calculated from the input and output sequences of the circuit under test (CUT). Then the fractional correlation functions between the fault...
متن کاملA Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse resp...
متن کاملLook up Table Based Low Power Analog Circuit Testing
In this paper, a method of low power analog testing is proposed. In spite of having Oscillation Based Built in Self-Test methodology (OBIST), a look up table based (LUT) low power testing approach has been proposed to find out the faulty circuit and also to sort out the particular fault location in the circuit. In this paper an operational amplifier, which is the basic building block in the ana...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016